
Managing Technical Debt in
Complex Software Systems

WHAT IS TECHNICAL DEBT? Technical debt can be defined as
a design or construction approach that is expedient in the
short term but that creates a technical context in which the
same work will cost more to do later than it would cost to
do now. If managed well, some debt can accelerate design
exploration. Left unrecognized and unmanaged, accumulated
technical debt results in increased development and
sustainment costs.

The Technical Debt Lifecycle
This simple definition of technical debt indicates the role that time
plays. Technical debt matters only as time flows and we want to
evolve the software system. If the system never evolves, we never
have to pay interest, so technical debt would not matter. Therefore,
it is important to understand the technical debt lifecycle.

1. Occurrence: The time when technical debt is taken on, for good
or bad reasons. For example, rather than investing in identifying
common services, developers copy and modify code.

2. Awareness: The time when technical debt is recognized and made
visible, when the organization becomes aware of it. Ideally, this
should overlap with the time that technical debt is taken on (when
it actually occurs).

3. Tipping Point: The time when the cost of having technical debt
starts to overcome the original benefit—that is, the value—of
incurring the technical debt. In the interval from Lifecycle Phase
1 to 3, the accumulating side affects of the debt have created a
context in which we might be better off repaying the debt. Before
the tipping point, we might just as well live with the debt because
we get some value from it. At the tipping point, we are paying more
than we gain.

4. Payoff: The time when organizations begin removing technical
debt from the system. The time interval between the tipping point
and payoff is when organizations experience most of the negative
consequences of debt and continue to accumulate interest.

4321

Bridge the Gap Between Business
and Development
Managing technical debt effectively requires
project managers, key decision makers, and
the technical teams to agree on the project
objectives. Achieving success by uncovering,
prioritizing, reducing, and eventually
strategically taking advantage of technical
debt requires the following:

• Development teams must be empowered
and incentivized to communicate known
sources of debt.

• Management must be willing to provide
resources to pay debt back when needed.

• If priorities change often and lead to
unexpected sources of technical debt, a
technical debt management strategy must
be developed.

Technical Debt Evaluation
To meet the challenge of uncovering, communicating,
and managing technical debt, the Software Engineering
Institute (SEI) has developed a systematic approach. It
includes techniques for making technical debt visible,
determining what type of debt the project has, and
integrating debt into project planning.

Make technical debt visible.
Often, development teams know that some project
components may incur future rework, but they do
not disclose it. The SEI team engages with the project
managers and software development teams to identify
debt by answering questions such as the following:

• Is adding a new capability taking longer than expected?
If so, are the root causes known?

• Would the system be able to upgrade to a new
technology with ease? What is the evidence?

• Are underlying structural issues making defects hard
to resolve?

Determine the type of technical debt.
Unstructured large classes, global variables, cyclic code
dependencies that create performance issues, and
unnecessary copy and paste are all issues of low code
quality that result in maintainability challenges and easily
lead to technical debt.

Managing debt that results from low code quality
and managing debt that results from wrong or
obsolete architectural issues require different strategies.
The SEI team engages with the project managers and
software development teams to answer questions such
as the following:

• Were structural shortcuts—such as unwanted modules,
large modules, or unsystematic reuse—taken to
optimize resources or for technical reasons? Do the
systems need to be re-architected?

• Do the systems meet key runtime requirements,
especially in security, performance, and availability?
If not, are the root causes known, and are there plans
to fix these issues?

• Are standards and procedures followed for
development practices?

• Do teams have sufficient development infrastructure
and tools to follow state-of-the-art configuration
management and testing practices?

• Does the system architecture cause more technical debt
to accumulate?

Integrate technical debt into project planning,
and associate technical debt with risk.
Managing technical debt is rooted in knowing the system’s
structure and behavior and balancing the program’s short-
term and long-term goals. In particular, data collection
and analysis techniques must incorporate technical debt
management into planning and risk management. The SEI
team—together with the project managers and software
development teams—identifies areas where data can
help uncover hidden sources of technical debt and help
prioritize where to pay debt down first. We help the
organization answer the following questions:

• Does the project allocate resources for paying down
known sources of debt and uncovering those that may
not be explicit?

• Is there a debt strategy based on the risk profile of
the system?

• Is it possible to identify and communicate known
sources of technical debt across the project artifacts?

Additional Resources
Architectural Technical Debt Library
resources.sei.cmu.edu/library/asset-view.cfm?
assetID=509492

Architectural Technical Debt Blog Archives
insights.sei.cmu.edu/sei_blog/technical-debt

©2018 Carnegie Mellon University | 4774 | DM-0004567 | 04.20.2018

About the SEI
The Software Engineering Institute is a federally funded research and development
center (FFRDC) that works with defense and government organizations, industry,
and academia to advance the state-of-the art in software engineering and
cybersecurity to benefit public interest. Part of Carnegie Mellon University, the
SEI is a national resource in pioneering emerging technologies, cybersecurity,
software acquisition, and software lifecycle assurance.

Contact Us
CARNEGIE MELLON UNIVERSITY
SOFTWARE ENGINEERING INSTITUTE
4500 FIFTH AVENUE; PITTSBURGH, PA 15213-2612

sei.cmu.edu
412.268.5800 | 888.201.4479
info@sei.cmu.edu

Visible Feature Hidden Architectural
Feature

Visible Defect Technical Debt

Visible Invisible

Positive

Negative

