

Rigorous propagation and convolution of physically-based error sources for LiDAR sensors

- Prepared by David B. Ober Geospatial Applications Branch, Geospatial Research Lab
- For P3DL
- Date: August 4, 2021

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited

- Problem
- Introduction
- LiDAR Hardware Model
- LiDAR Error Sources
- Results
- Conclusion

Problem: How do we discover physical sources of mechanical and optical aberrations, misalignments, and measurement timing errors on 3D point clouds constructed from LiDAR measurement data?

- Problem
- Introduction
- Hardware Model
- Error Sources
- Results
- Conclusion

Calibration of high altitude LiDAR sensors can be challenging and expensive

Initially constructed point clouds have distortions/biases

https://www.darpa.mil/about-us/timeline/lidar

System-driven calibration
Non-physical empirical models
Data-driven calibration

http://www.sigmaspace.com/blog-post/sigmas-hrqls-lidar-highlighted-laser-focus-world-top-product-2014

System-driven calibration
Non-physical empirical models

New calibrations applied post-deployment
Expensive/time-consuming studies to develop empirical models
Data-driven calibration remains expensive/time-consuming
Neither system has fully identified physical sources of distortion/bias errors

System compensation parameters for LiDAR scan angle errors may not directly relate to physical errors

T. Schenk, "Modelling and analyzing systematic errors in airborne laser scanners," *Technical Notes in Photogrammetry*, vol. 19, 2001.

$$\tau_i^{\star} = \frac{\tau + \Delta \tau}{2} - i \frac{\tau + \Delta \tau}{n - 1} + \epsilon$$

$$\Delta \tau_i = \tau_i^{\star} - \tau = \epsilon + \frac{\Delta \tau}{2} - \frac{\Delta \tau}{n-1}i$$

Uncompensated total scanner angle range t

Compensated total scanner angle range τ*

Scale of total angle error $\Delta \tau$ is scaled linearly with distance from ϵ

$$\beta_C(t) = \beta_M(t) S_{\beta}$$

$$\alpha_C(t) = \alpha_M(t) S_o$$

$$\alpha_C(t) = \alpha_M(t) S_{\alpha}$$
 S_{β}, S_{α} : Scan angle scale factors

Genesis for the research – trying to identify the Risley Prisms world orientation (and surprise correction found)

- Problem
- Introduction
- Hardware Model
- Error Sources
- Results
- Conclusion

Ray tracing can be used to determine readhead/encoder measurements and application of Snell's law (prisms)

Proposed transformation origins, orientations, and child/parent links between different hardware components

13 of 15 child/parent transformation links are gimbal based Rotation Axes A & B transformations propagate to position/orientation of encoders and optics Ray tracing convolves all errors into angle measurements and laser/detector line-of-site

Additional reference frames defined by laser light as it interacts with optical elements (using Snell's law)

- Problem
- Introduction
- Hardware Model
- Error Sources
- Results
- Conclusion

The hardware error sources that we account for in model

Rotation Axis: bearing runout -> radial & axial runout

Encoder: eccentricity, swash, line scale errors

Readhead: clock timing bias, parallax

Optics: n1,n2 index of refraction, wedge angle

Laser/Detector: clock timing bias

All components can have misalignments in position and orientation

- Problem
- Introduction
- Hardware Model
- Error Sources
- Results
- Conclusion

Simulated misalignments and effect (using Snell's law)

Simulated misalignments on readhead/encoder angles

Static visualization of Risley Prism in operation

Removal of Prisms and Ray Traces (no misalignments)

Looking at simulated data in other fixed frames

Comparison of genesis data vs. simulated sensor data

Pattern extracted from collected data

Pattern created from HW Model

Simulated data is from "perfectly aligned prisms"

Comparison of aligned and misaligned data

- Problem
- Introduction
- Hardware Model
- Error Sources
- Results
- Conclusion

We can model physical aberrations and misalignments of mechanical and optical components and measurement timing errors on LiDAR measurement data

Other benefits for new models

- Streamline trade-studies and critical investment decisions across the entire imaging sensor acquisition lifecycle including Analysis of Alternatives, CONOPS, HW & Sensor Model design, and sensor fusion
- Perform comprehensive and rigorous virtual studies on the complex interactions and dependencies between HW design and component specifications, sensor model compensation parameterizations, and sensor calibration
- Provide unprecedented insight into error propagation enabling new research into techniques and approaches to improve and/or automate calibration
- Verify numerically and graphically the illumination (or IFOV) of sensor coverage for a given sensor mission, HW operational settings, and 3D target geometries
- Visually validate "HW Model" component selection and assembly
- Evaluate new signal processing and conditioning algorithms

