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Calibration of high altitude LiDAR sensors can be challenging and
expensive
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System-driven calibration System-driven calibration
Non-physical empirical models Non-physical empirical models

Data-driven calibration

New calibrations applied post-deployment
Expensive/time-consuming studies to develop empirical models
Data-driven calibration remains expensive/time-consuming
Neither system has fully identified physical sources of distortion/bias errors
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Fixed Reference Frame: UTM, ID: 1, Proj: Ortho Fixed Reference Frame: Housing, ID: 1.1, Proj: Ortho
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Fixed Reference Frame: LaserPrismB, ID: 1.1.2.2, Proj: Ortho : 1.1.3.1, Proj: Ortho
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We can model physical aberrations and misalignments of
mechanical and optical components and measurement
timing errors on LIDAR measurement data

Other benefits for new models

« Streamline trade-studies and critical investment decisions across the entire imaging
sensor acquisition lifecycle including Analysis of Alternatives, CONOPS, HW &
Sensor Model design, and sensor fusion

» Perform comprehensive and rigorous virtual studies on the complex interactions
and dependencies between HW design and component specifications, sensor
model compensation parameterizations, and sensor calibration

* Provide unprecedented insight into error propagation enabling new research into
techniques and approaches to improve and/or automate calibration

» Verify numerically and graphically the illumination (or IFOV) of sensor coverage for
a given sensor mission, HW operational settings, and 3D target geometries

 Visually validate “HW Model” component selection and assembly

« Evaluate new signal processing and conditioning algorithms
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